Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization
نویسندگان
چکیده
The dynamic characteristics of power batteries directly affect the performance of electric vehicles, and the mathematical model is the basis for the design of a battery management system (BMS).Based on the electrode-averaged model of a lithium-ion battery, in view of the solid phase lithium-ion diffusion equation, the electrochemical model is simplified through the finite difference method. By analyzing the characteristics of the model and the type of parameters, the solid state diffusion kinetics are separated, and then the cascade parameter identifications are implemented with Particle Swarm Optimization. Eventually, the validity of the electrochemical model and the accuracy of model parameters are verified through 0.2–2 C multi-rates battery discharge tests of cell and road simulation tests of a micro pure electric vehicle under New European Driving Cycle (NEDC) conditions. The results show that the estimated parameters can guarantee the output accuracy. In the test of cell, the voltage deviation of discharge is generally less than 0.1 V except the end; in road simulation test, the output is close to the actual value at low speed with the error around ±0.03 V, and at high speed around ±0.08 V.
منابع مشابه
Multi-Scale Parameter Identification of Lithium-Ion Battery Electric Models Using a PSO-LM Algorithm
This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB) electric model by using a combination of particle swarm optimization (PSO) and Levenberg-Marquardt (LM) algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD) of the positive and negative electrodes in the...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملNon-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملParticle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کامل